54 research outputs found

    Formal verification of a software countermeasure against instruction skip attacks

    Get PDF
    Fault attacks against embedded circuits enabled to define many new attack paths against secure circuits. Every attack path relies on a specific fault model which defines the type of faults that the attacker can perform. On embedded processors, a fault model consisting in an assembly instruction skip can be very useful for an attacker and has been obtained by using several fault injection means. To avoid this threat, some countermeasure schemes which rely on temporal redundancy have been proposed. Nevertheless, double fault injection in a long enough time interval is practical and can bypass those countermeasure schemes. Some fine-grained countermeasure schemes have also been proposed for specific instructions. However, to the best of our knowledge, no approach that enables to secure a generic assembly program in order to make it fault-tolerant to instruction skip attacks has been formally proven yet. In this paper, we provide a fault-tolerant replacement sequence for almost all the instructions of the Thumb-2 instruction set and provide a formal verification for this fault tolerance. This simple transformation enables to add a reasonably good security level to an embedded program and makes practical fault injection attacks much harder to achieve

    Experimental evaluation of two software countermeasures against fault attacks

    Get PDF
    Injection of transient faults can be used as a way to attack embedded systems. On embedded processors such as microcontrollers, several studies showed that such a transient fault injection with glitches or electromagnetic pulses could corrupt either the data loads from the memory or the assembly instructions executed by the circuit. Some countermeasure schemes which rely on temporal redundancy have been proposed to handle this issue. Among them, several schemes add this redundancy at assembly instruction level. In this paper, we perform a practical evaluation for two of those countermeasure schemes by using a pulsed electromagnetic fault injection process on a 32-bit microcontroller. We provide some necessary conditions for an efficient implementation of those countermeasure schemes in practice. We also evaluate their efficiency and highlight their limitations. To the best of our knowledge, no experimental evaluation of the security of such instruction-level countermeasure schemes has been published yet.Comment: 6 pages, 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Arlington : United States (2014

    Automatic Detection of Performance Anomalies in Task-Parallel Programs

    Full text link
    To efficiently exploit the resources of new many-core architectures, integrating dozens or even hundreds of cores per chip, parallel programming models have evolved to expose massive amounts of parallelism, often in the form of fine-grained tasks. Task-parallel languages, such as OpenStream, X10, Habanero Java and C or StarSs, simplify the development of applications for new architectures, but tuning task-parallel applications remains a major challenge. Performance bottlenecks can occur at any level of the implementation, from the algorithmic level (e.g., lack of parallelism or over-synchronization), to interactions with the operating and runtime systems (e.g., data placement on NUMA architectures), to inefficient use of the hardware (e.g., frequent cache misses or misaligned memory accesses); detecting such issues and determining the exact cause is a difficult task. In previous work, we developed Aftermath, an interactive tool for trace-based performance analysis and debugging of task-parallel programs and run-time systems. In contrast to other trace-based analysis tools, such as Paraver or Vampir, Aftermath offers native support for tasks, i.e., visualization, statistics and analysis tools adapted for performance debugging at task granularity. However, the tool currently does not provide support for the automatic detection of performance bottlenecks and it is up to the user to investigate the relevant aspects of program execution by focusing the inspection on specific slices of a trace file. In this paper, we present ongoing work on two extensions that guide the user through this process.Comment: Presented at 1st Workshop on Resource Awareness and Adaptivity in Multi-Core Computing (Racing 2014) (arXiv:1405.2281

    Impact of Code Compression on Estimated Worst-Case Execution Times

    Get PDF
    International audienceCode compression techniques might be useful to meet code size constraints in embedded systems. In the average case, the impact of code compression on the performance is double-edged: on one side, the number of accesses to memory hierarchy is reduced because several instructions are coded in a single word, and this is likely to reduce the execution time; on the other side, the decompression penalty increases the processing time of compressed instructions. Nevertheless, experimental results show that the execution time might be lowered by code compression. In this paper, our goal is to analyze the impact of code compression on the estimated Worst-Case Execution Time of critical tasks that must meet at the same time code size constraints and timing deadlines. Changes in the access patterns to the instruction cache are indeed likely to alter the accuracy of the cache analysis within the process of determining the WCET. Experimental results show that, besides reducing the code size, our code compression scheme also improves the WCET estimates in most of the cases

    Fault attacks on two software countermeasures

    Get PDF
    Short version of the article "Experimental evaluation of two software countermeasures against fault attacks" presented at the 2014 IEEE Symposium on Hardware-Oriented Security and Trust (HOST) in May 2014.International audienceInjection of transient faults can be used as a way to attack embedded systems. On embedded processors such as microcontrollers, several studies showed that such a transient fault injection could corrupt either the data loads from the memory or the assembly instructions executed by the circuit. Some countermeasure schemes which rely on temporal redundancy have been proposed to handle this issue. Among them, several schemes add this redundancy at assembly instruction level. In this paper, we perform a practical evaluation for two of those countermeasure schemes by using a pulsed electromagnetic fault injection process on a 32-bit microcontroller

    Scalable Task Parallelism for NUMA: A Uniform Abstraction for Coordinated Scheduling and Memory Management

    Get PDF
    International audienceDynamic task-parallel programming models are popular on shared-memory systems, promising enhanced scalability, load balancing and locality. Yet these promises are undermined by non-uniform memory access (NUMA). We show that using NUMA-aware task and data placement, it is possible to preserve the uniform abstraction of both computing and memory resources for task-parallel programming models while achieving high data locality. Our data placement scheme guarantees that all accesses to task output data target the local memory of the accessing core. The complementary task placement heuristic improves the locality of task input data on a best effort basis. Our algorithms take advantage of data-flow style task parallelism, where the privatization of task data enhances scalability by eliminating false dependences and enabling fine-grained dynamic control over data placement. The algorithms are fully automatic, application-independent, performance-portable across NUMA machines, and adapt to dynamic changes. Placement decisions use information about inter-task data dependences readily available in the run-time system and placement information from the operating system. We achieve 94% of local memory accesses on a 192-core system with 24 NUMA nodes, up to 5Ă— higher performance than NUMA-aware hierarchical work-stealing, and even 5.6Ă— compared to static interleaved allocation. Finally, we show that state-of-the-art dynamic page migration by the operating system cannot catch up with frequent affinity changes between cores and data and thus fails to accelerate task-parallel applications

    Topology-Aware and Dependence-Aware Scheduling and Memory Allocation for Task-Parallel Languages

    Get PDF
    International audienceWe present a joint scheduling and memory allocation algorithm for efficient execution of task-parallel programs on non-uniform memory architecture (NUMA) systems. Task and data placement decisions are based on a static description of the memory hierarchy and on runtime information about intertask communication. Existing locality-aware scheduling strategies for fine-grained tasks have strong limitations: they are specific to some class of machines or applications, they do not handle task dependences, they require manual program annotations, or they rely on fragile profiling schemes. By contrast, our solution makes no assumption on the structure of programs or on the layout of data in memory. Experimental results, based on the OpenStream language, show that locality of accesses to main memory of scientific applications can be increased significantly on a 64-core machine, resulting in a speedup of up to 1.63Ă— compared to a state-of-the-art work-stealing scheduler

    Language-Centric Performance Analysis of OpenMP Programs with Aftermath

    Get PDF
    International audienceWe present a new set of tools for the language-centric performance analysis and debugging of OpenMP programs that allows programmers to relate dynamic information from parallel execution to OpenMP constructs. Users can visualize execution traces, examine aggregate met-rics on parallel loops and tasks, such as load imbalance or synchronization overhead, and obtain detailed information on specific events, such as the partitioning of a loop's iteration space, its distribution to workers according to the scheduling policy and fine-grain synchronization. Our work is based on the Aftermath performance analysis tool and a ready-to-use, instrumented version of the LLVM/clang OpenMP run-time with negligible overhead for tracing. By analyzing the performance of the MG application of the NPB suite, we show that language-centric performance analysis in general and our tools in particular can help improve the performance of large-scale OpenMP applications significantly

    A framework to experiment optimizations for real-time and embedded software

    Get PDF
    Typical constraints on embedded systems include code size limits, upper bounds on energy consumption and hard or soft deadlines. To meet these requirements, it may be necessary to improve the software by applying various kinds of transformations like compiler optimizations, specific mapping of code and data in the available memories, code compression, etc. However, a transformation that aims at improving the software with respect to a given criterion might engender side effects on other criteria and these effects must be carefully analyzed. For this purpose, we have developed a common framework that makes it possible to experiment various code transfor-mations and to evaluate their impact of various criteria. This work has been carried out within the French ANR MORE project.Comment: International Conference on Embedded Real Time Software and Systems (ERTS2), Toulouse : France (2010
    • …
    corecore